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I. Introduction

This document is the fifth progress report submitted each six weeks in accordance
with the requirements of contract N00014-75-C-1040 and contains a summary of the
work accomplished on the subject contract during the reporting period 1 January
1976 through 15 February 1976. The werk outlined in the Contract Work Statement
is proceeding on schedule and no unanticipated difficulties or problem areas have

been encountered.

IT. Work Accomplished During the Current Reporting Period

Substantial progress was made during the current reporting period which was
devoted to the following areas:

e Further correlation properties of four-state sequences.

o Implementation of four-state sequences in systems using correlation detectors.

e Spectral properties of four-state sequences.

The cross-correlation function of any two maximal four-state sequences was deter-

mined in terms of the cross-correlation function of the binary sequences used to

represent them. Two general formulas were obtained, each of which applies depending

on whether the four-state sequences being correlated are of the same or opposite
category. It was shown that the cross-correlation function of two maximal four-

state sequences of opposite category is real valued.

The mean square value of the cross-correlation function of any two maximal four-
state sequences has been determined. For two maximal four-state sequences of

opposite category the mean square value of their cross-correlation function is
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found to be less than that for binary maximal sequences of the same period.
We thus conclude that the four-state sequences will perform better with respect

to their cross-correlation properties than binary sequences of the same period.

The role of the correlation function of two four-state sequences as previously
defined in this study was examined from an implementation point of view.

Specifically, the output of a correlation detector receiving a four-state encoded

signal and using a four-state encoded local reference was computed and the dependence

of this output on the correlation function of the corresponding sequences was

determined.

The spectral properties of signals encoded with four-state sequences were studied
and a general formula for the determination of their spectra was developed. This
formula was applied to determine the power density spectrum of maximal four-state

sequences.

III. Meetiﬁgs

A presentation describing the results to date on the subject study was made to
Naval Research Laboratories personnel by Dr. Robert Gold, consultant to Collins
Radio Group, on 14 January 1976. Those properties of four-state sequences having

potential applications to coded communication systems were emphasized. Mr. Jim

Allen of Naval Research Laboratories suggested subsequent presentations be arranged

in order to acquaint potential users with the techniques being developed.

IV. Personnel
Personnel expending effort on the subject contract during the current reporting

period: Dr. Robert Gold, consultant, Collins Radio Group.
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V. Plans For Next Reporting Period

In accordance with the contract work statement, a study of the correlation

properties of four-state Gold families will be inftiated.

VI. Technical Appendices

Appendix E included in this report contains the technical details of the

results described above.
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APPENDIX E
CORRELATION AND SPECTRAL PROPERTIES OF FQUR-STATE SEQUENCES

E.1 GENERAL EXPRESSION FOR CROSS-CORRELATION OF MAXIMAL FOUR-STATE
SEQUENCES.

If a is four-state maximal sequence generated by the primitive four-state
polynomial f(x) e GF(4) [x] then we have shown in a previous theorem that
the four-state sequence a can be represented as the interleaving of two

binary sequences generated by the binary polynomial f(x) f(x). In particu-

lar, with respect to the basis {8,682} we have

a = (ao,ap/3) for f(x) of category one (f(O) = B) and
a-= (ao,a2P ) for f(x) of category two (f(O) = 82) when
3
P](fixi)
apns o
O R0 T

In this section we determine the cross-correlation function of any two maximal

four-state sequences a and b in terms of the cross-correlation functions of the

binary maximal sequences used to represent them.

Theorem: Let a and b be two maximal four-state sequences
aev(F(x)) 5 F(x)e6F(4)[x]-
bev(g(x)); g(x)eGF(4)[x]

P (FT7) P, (a0a7)
Let ao= _ and b0= _—
f(x) F(x) f(x) fx)
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with respect to the basis (8,82). Then if a and b are of the same

o

L]

(e

st
e
o

category one
Re 6(a,b)(1)= e(ao,bo) (1)

e(a b )(T) - e(aosbp/3)(T)
In 8(a,b) ()= — 213

2

if a and b are of different category a category one b category 2
+ S
8(aysbo) (1) + 6(asbp 3)

Re 8(a,b)(t)= 5

Im 8(a,b)(z) = O

Proof: By a previous theorem we know that if a and b are any two four-state

sequences then

8(aysb () + 6(aysb,)(7) e(az,b])(T) - e(a],bz)(T)
6(a,b) ()= [ 5 ] +j [ 5 '

[31:22]
[P1:5,]

of the four-state sequence gz’ as the interleaving of binary sequences.

Where } is the representation with respect to the basis'{B,Bz}

Case 1: Suppose a and b are both of category 1 then by a previous theorem we have

- - . : 2
a= (ao,ap/3) b (bo,bp/3) with respect to the basis {B,8“}. Thus

using the above expression for 6(a,b) we have

Re e(a,b)(r)= 5 = e(aost)(T)
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Proof:

Case 1:

with respect to the basis (B,Bz). Then if a and b are of the same -
category one =
Re 6(a,b)(T)= 6(a0,b0) (1)

e(ao,bzp/3)(T) - B(ao,bp/3)(T)

Im 6(a,b)(t)=

if a and b are of different category a category one b category 2
+
G(ao,bo)(T) e(aosbp/3)

Re 8(a,b){(T)= 5

Im 8(a,b)(t) = 0

By a previous theorem we know that if a and b are any two four-state

sequences then

e(a]’b])(T) + e(azabz)(T) . e(az’b1)(T) - e(a1sb2)(T)
8(a,b)(1)= 5 +] 3
[*1°%]) 6.6
Where Y 17 24} is the representation with respect to the basis {B,R }
(5155

of the four-state sequence {Z} as the interleaving of binary sequences.

Suppose a and b are both of category 1 then by a previous theorem we have

a = (ao,a ) b= (b with respect to the basis {B,Bz}. Thus

pb
P/3 0 P/3)
using the above expression for 6(a,b) we have

e(ao,bo)(T)‘ + e(ap/3,vbp/3)('r)

Re e(a,b)(T)= e(aosbo)(T)

2
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02,550} () = 8agsby, ) (x)

Im gla,b)(7)=

e(aO’bZP/3)(T) = e(aoabp/3)(T)

Case 2: Suppose a is of category one and b is of category two. Then

by previous theorem we have

a = [ao,ap/3] b = [bn bzp/3]
with respect to the basis (8,82), Thus, using the above expression for

6(a,b) we have

8(agsby) (1) + 6(ap 3sbpp ) (1)

Re (e(a,b)<Tﬁ= 5

e(ao,bo)(T) + o6(a ,bp/3)(T)
2

I le(a,b)(Tﬂ=6(aP/3,b0)(T) - olagibyp )0

Example: In what follows we illustrate the results of the above theorem.

(1) We select two maximal four-state polynomials from our tables
of degree 2. These polynomials are listed in the tables as 1 All
and 7 AAl and they represent the second degree polynomials

2 2

f(x)=g+x+xc and g(x)= B+Rx+x respectively. We note that since

f(0)=g(0)=8 these polynomials are of the same category.
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The polynomial g(x) = h(x) = 82+32x+x2 is of the opposite category
to g(x) and f(x).

(2) The characteristic sequences of V(g+x+x2), V(B+Bx+x2) and

V(82+82x+x2) are

(xf)'+f _

f - gHX+XE
(xg)'+g _  Bx

g B+Bx+x
(xh)'+h _ 82x _

h B2+g2x+x2

012 3 456 7 8 9 10 11

0 828 g26°0 8 1 B 8

1

1

B

2

1

0 B B O B

= =01128 10 82 82 1 8

2

0

0

0

12 13 14

1 8 1T 1

B B B 8

2
82 82 B B

(3) With respect to the basis (8,82) these four-state maximal sequences

are represented as the interleaved sequences

a =

o)

000
001
001

1

b =[ bgsbg

J(Category 1) ¢

[CO’C10] (Category 2)

1001T01001017T710100010011111

.
1

1
1

101710001017T7T01001017100110

011100101011100001T011001

7 8 9

E-4
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13

14

eV(1+x+x4)

ev(1+x3+x4)

eV(1+x3+x4)
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(4) The cross-correlation function of the four-state maximal sequences

a and b which are both of the first category and sequences a and c where
sequence ¢ is of the second category may be expressed in terms of the
cross-correlation function of the maximal binary sequences ao,b0 and

3gsC respectively. The required binary cross-correlation functions are

0
readily computed to be:

01 2 3 456 7 8 9 1011121314

G(ao,bo)(r) = =~-1-5-5 3-57 3-1-5 3 7-1 3-1-1
e(ao,b]o)(T) = 7-1 3-1-1-1-5-56 3-5 7 3-1-5 3
e(ao,bs)(T) = 7 3-1-5 3 7-1 3-1-1-1-5-5 3-5
e(ao,co)(r) = 7 3-1-53 7-1 3-1-1-1-5-5 3-5
e(ao,cs)(T) = 71 3-1-1-1-5-5 3-5 7 3-1-5 3

using the above theorem we find

o(a ’b]o)('l') - e(ao,bs)

8(a,b) (1) = 6(agsby) (1) +i 0
‘ 2
6(a_,c )(t) + 8(ansce)(T)
6(asc)(t) = 0°°0 0°"5 + 30
' 2
Thus we have
T 8(a,b)(t) 6(a,c)(t)
0 =T + 0J 7 + 0J
1 -5 - 23 1+ 0§
2 -5 + 2j 1 + 0j
3 3+ 2] -3 + 0J
4 -5 - 2] T + 0j
5 7 - 43 3+ 0]
6 3-2] -3+ 0j

E-5
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7 -1 - 4j -1 + 0j
8 -5+ 2j 1+ 0j
9 3-2j -3 + 0j
10 7 + 43 3+0j
11 -1+ 4j -1 + 0j
12 3+ 2 -3+ 0j
13 -1 - 45 -1 + 0j
14 -1+ 4 -1+ 0j

These correlation functions may be verified by computing g(a,b) and 6(a,c)

directly from the four-state sequences.
The above result shows that the cross-correlation function 6(a,c) of any
two maximal four-state sequences a and c of opposite category is real

valued. Furthermore, the upper bound of {6(a,c)] js Tess than or equal

to the upper bound of‘e(ao,co) where a, and < are the corresponding

binary sequences whose interleaving represents a and c respectively. In

fact we have

Max . 6(a,c) (1)

Max 6(agscy)(r)  + e(ao,c5)(r)
T

2

< ox [ ’e(ao;co)(T)’ . ,e(ao,ZS)(T)‘ ]

. le(ao,co)(r)[ . Max Ie(aofc5)(T)!
- g 2 T 2
= Max ,e(ao,co)('r)

A plot of the cross-correlation function of the binary and four-state
sequences of opposite category is presented in figure E-1.
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E.2 SUM OF SQUARES OF CROSS-CORRELATION FUNCTION VALUES -
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In the previous section we showed that the bound on the absolute
value of the cross-correlation function of two four-state maximal
sequences of opposite category is Tess than or equal to the bound
on the absolute value of the cross-correlation function of the

two corresponding binary maximal sequences. We now compute the

sum of the squares of the absolute values of the cross-correlation
function of two maximal four-state and binary sequences and show
that for maximal four-state sequences of opposite category, this
sum of squares is less than the sum for the correlation function of

the corresponding binary sequences.

Theorem: Let a and b be maximal four-state sequences of period

4™M1=p. Then

3.24n-] _22" _]

2 _J 2281 52" 1 for a and b binary

oAn-1 YA

for a and b of the same category

P-1
) ,e(a,b)('r)
=0

for a and b of the opposite category

Proof: We have shown in a previous theorem that for any two maximal four-state

sequences of period P we have

P-1 P-1
Z 'e(a,b)(r)l 2 . Z 6(asa)(t) &(b,b)(1T)
T=( =0
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For a and b four-state maximal sequences of the same category or

binary, we have #6(a,a)(t) = 6(b,b)(t) and hence

P-1
)3
=0

Using our previous evaluation of the auto correlation function of

6(a,b)?(r)

P-1
= 2: Ie(a,a)(r)
=0

2

a maximal four-state sequence we have

)

P-1
T=0

6(a,a) ()

2

]

For a and b binary sequences

P-1

=0

E:- le(a,a)(f)

2

4n-1 _2n

(@)% + 4"

2°2 -2 -

-1
34! p2n 4

-2

1

(aM-1)2 + 2(-145-4") (-1-3-4") + 4"
2 2

For a and b four-state maximal sequences of opposite category

glasa) ()

n

e(a,a)(4 51

e(a,a)(2(4;-1

8(b,b) (1)
_—
e(b,b) 53111= 145 7
A ]
»ze(b,b)(giﬂgll))= -1-j

E-9
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Hence we have

P-1 P-1
z;) ,B(G,b)z('r) = ZO 6(a,a)(t) 6(b,b)(7)
1= T=

For the sequences of period 42-1=15 of the previous example, we

have
a,b same category ao,b binary a,c opposite category
fo(a.b)i) |6(agsbg) () |0(a.c)%()
T
0 1 1 49
1 29 25 1
2 29 25 1
3 13 9 9
4 29 25 1
5 65 49 9
6 13 9 9
7 17 1 1
8 29 25 1
9 13 9 9
10 65 49 9
11 17 1 1
12 13 9 9
13 17 1 1
14 17 1 1
Y= 367 Y= 239 Y= m
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ROLE OF 6 IN CORRELATION DETECTION

ENCODING OF SIGNALS

In this section we describe the use of the four-state sequence to encode
a carrier. Each of the four-states may be used to determine a phase of
the carrier. Let a be the four-state sequence. Let y be the real valued

mapping of GF(4) given by

v(0) =05 Y(I)=m; Y(B) = ——3 Y(B?) = 2_”

The encoded carrier is then given by the equation

(o

s(t) =§m cos wt + yla(k)] f, (t-ak)

1 ' for 0 <t <A

—

where fo(t)

=0 Otherwise

The encoded carrier is illustrated in Figure E-2.
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Code a

(a)

m/2

3n/2

“cos ut + y(a(kﬂ

\_/

/\

\/

\/

Figure E-2.

Carrier Encoded with Four-State Sequence
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E.3

2

The above encoded carrier may also be represented as the real part
of a complex signal, i.e.:

[e ]

s(t) = Re [f(t)eiwt]‘ where f(t) = ) eiY(a(k)) fo(t-Ak)

k==
We note that n(x) = eIY(X) for a1l x e GF(4)
where n is the previously defined complex valued mapping of GF(4)

n(0) =0 n(B) =i
n(1) = -1 n(g?)= -i

Thus the encoded carrier has the representation

[0}

s(t) = Re [F(t) e9t| where (1) = T nfa(k)) f,(t-ak)

k==

COMPUTATION OF OUTPUT OF CORRELATION DETECTOR

In a spread spectrum communication system, the incoming encoded signal

s](t) is multiplied by a Jocally generated replica of the received signal

to rémove the code and recover the base-band information. In this

section we describe this process for four-state sequences and indicate the

importance of their correlation function.

Let the received signal be:

o]

sy(t) = ¥

K==co

cos(mt + y(a(k») fo(t-Ak) = Re f](t)eiwt

Where a is four-state sequences

E-13
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v is real valued mapping of GF(4) 0 > 0 B —> /2
1T —3>» 7 B™ =—> 31/2

00

f(t) = L n{a(k)]fO (t-Ak)

k==c0

n(x) =e'¥(x)

Let the Tocally generated signal be identical in form to sj(t) but encoded
with a possibly different four-state sequence b:

AP
Then R(T) =f s.l(t) sz(t-'r) dt

0

co

zg: (cos wr) Re 6(a,b)(2) - sin wr Im 6(a,b)(R) R(fo,fo)(r-Az)

Q== 2

Where R(f).f,)(t) = f fols) f(s-t)ds
We prove the above result in three steps

(1) We first show that

AP AP
R(1) = f sq(t) Sz(t-T)dt = J2._ Re [e"‘“f f,(t) fz(t-'r)dt]
0 0

where f.(t) = L n(a(k)) fy (t-ak)

k

[e ]

Y. n(b(k) £, (t-ak)

k=-co

(1)



This result shows that the correlation function of the received
signal and the locally generated reference depends essentially
on the correlation function of the baseband encoded wave forms
AP
i.e. (t-7)dt.
1"1 and f"2 €., onf f](t) fz(t ‘I.‘)dt.
0

(2) We next show that

AP ©
R(F 5 F,) () = f £(t) £ (t-r)dt = Z 8(a,b) (k) R(f,fo) (v-k)
0 k==

[++]

where e(fo,fo)(r) = ‘[. fo(t) fo(t—r)dt

=00

This result shows that the correlation function of the encoded baseband -
wave forms depends essentially on the correlation function 6(a,b) of the

four-state encoding sequences a and b.

(3) The final expression for the correlation function of the received and
locally generated signals 51(t) and sé(t) respectively is obtained by
substituting the expression for the correlation function of the baseband
signals given in (2),

o]

R(F5F,) (1) = L 8(asb)(x) R(f,Fy) (x-k)

k==

,,,,,,,



into the expression for the correlation function of the received

and locally generated signals given in (1)

AP ~ AP
1 )
J; S](t) sz(t-T)dt =75 Re [e1wt ‘j; f](t) fzit-fsdt ]

. Re[ for &2 [Re 8(asb)(k) +1 In e(a,b)(k)} R(fo,fo)(t-Ak)]

e
k=-

[ve]

- Z (cos wt) Re 6(a,b)(k) - (sin wr) Im 6(a,b)(k)
" R(fo,fo)(t-Ak)

k=-x

Proof of result (1)
R(T)

AP

j s, (t) sy(t-1)dt

0

AP
J. Re [f](t)eiwt} Re[fz(t—r)eiw(t‘t)]dt

0 —
| Re(zy°2,) + Re(z;°Z,)
We now use the identity (Re z;) (Re z,) =

2

,,,,,



AP

e 10 e @D e gy 0TIt

0

Since the integral of the first term is zero, we have:
AP
iwT
Re [e J( f1(t) let-ridtJ

0

1
?

Proof of result (2)

AP
j £.(6) FTE0) dt

0

AP} o

] Y n (alk)) £ (tak Y no(k) F(tr-ag)] dt
0 k== ‘j-_oo

w‘ w AP

Z Z n(a )) f fo( t-2k) fo(t—f-Aj) dt
k=~ j=-o 0

@ Pl o alkeT)

z n(a(k)) 7Fm) f Fol t-0K) F (t-T-ad) dt
j=-o k=0

E-17
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E.4

E.4-1

Let s = t~Ak so that t-t-Aj = s-1 + A(k-J)

P P-1 A

}E: 2{: n(a(k)) n(b(J)’./' fo(s) fo(s—r f A(k-J))dS
j==° k=0 | 0

Let 2 = k~J so that Jj=k-2

P-1

2{: n(a(k)) n(bik-z’jjf fO(s) fo(s-(T-Az))ds

g=- k=0

oo}

zg: o(a,b)(&) R (fo,fo)(T-Az)

=0

POWER SPECTRAL DENSITY OF FOUR-STATE ENCODED SIGNAL

Our objective in this section is to compute the power spectral density

of a four-state encoded signal. We do this in the series of results

that follow.

POWER SPECTRAL DENSITY OF ENCODED BASE BAND SIGNAL

Result - Let a be a four-state sequence of period P

[}

Let £(t) = ) n(alk)) & (t-ak)

K==e

E-18
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where n(0) =1 n(1)=-1 @ =1 n(g® =-i

The power density spectrum of the baseband signal f is given by

=]

S(F) (u) = (—A—s? Z FO)(3) ¢ (o z—;ﬂ)

=m0

Where o is the auto-correlation function of the binary sequence a

i.e.
P-1

8(a,a)(t) = j{: n(a(i)) n(a(i-r)’ and F(e) 1is the digital
i=0

fourier transform of the complex valued periodic sequence ©

\ P-1 -2mijk
F(0)(d) = Z 8(a,a)(k) e |
k=0

Proof: To compute the power density spectrum S(f) of f we use the
Weiner-Khinchin Theorem which states that S(f) is\/ %1 times the auto-
correlation function of f. The auto-correlation function of f s

given by

]

p(f)(T) = %F E:, 6(a,a)(k) & (t-An) and hence we have

n:-m

S(f)(w)

E-19

fa—



INH

Sy o Ly

3T 3T1¢¢CET
UIL1i31x20V 1

A oE

% F[%P Z o(asa)(k) § (w-kA)]

k= =co
P-1 .
(V ‘12F )(%p)(i—p’l) F[Z 6(a,a)(k)s (w-kA)]Z 5 (w_ gg%)
k=0 j=-oo
o omijk .
2 8(asa)(k) e - Z 5 (w _ﬂ)
2p2 420 L AP
2 . 273
(AP)Z F(G)(J) ¢ (w- K[IT—)
j:_oo

[« o}

Corollary: Let g(t) = Z n(a(k)) § (t-ak)

ke

[o o]

and £(t) = ZE: n(a(k)) Fy(t-ak)

K=o

Then the power spectral density S(f) of f s given by
S(f)(w) = 7 S(g)(w) - E(fo)(w)

E-20



E.4-2

where E(fO) is the energy spectral density of fo

Proof: f 1is the convolution of fO and g .

POWER SPECTRAL DENSITY OF CARRIER ENCODED WITH A FOUR-STATE SEQUENCE

We may now compute the power density spectrum of a carrier encoded

with a four-state sequence.

Result: The power density spectrum S(f) of the encoded signal

[o0)

s(t) = :E: cos(ubt + y(a(k))) fo(t A k) = Re [f(t)eiwot]

k=~

o

where f(t) = zi: ﬂ(a(k)) fo(t—Ak) is given by

k= =0

$(s)(w)=

: . 2md
%—- —1 E(fo)(w-wo) 'EE: F(e(a))(J) 6((w-w0) - ZFE-)

(e o]

+E(fg)(w * ) Z Flot@)d) 6 ((wr wp) - 23

je-o

E-21



Proof: We compute the power density spectrum of the encoded
signal s by taking the fourier transform of its auto-correlation

function R(s) which was shown to be

Re[einT R(f)(T)]

S(s)(w)

'\/% F (R(s))(w) Weiner Khinchin Theorem

( % %—) F[Re[eimOT R(f)(-r)” (w) previous result for R(s)

(\/?X%) (%)[F(emm R (<)) + F {70 R(D() (-mJ

<-\/%)<Jz')(]§) [ F(R(f)(T))(ux—mo) " F(R(f)('r))(uwmo)]
( % (%-)(%) %)[S(f)(w-wo) + S(f)(url-wo) ] Weiner Khinchin

(%) [E(fO)(w—wo) . S(g)(w-mo) + E(fp) (wrug) - 5(9)(w+w0)}

by previous corollary where g(t) = Z n(a(k))a (t-Ak)

= 00
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The result now follows from the previous computation.

Corollary: If fO is the square pulse such that

fo(t) =1 O<t<A and fO(t) =0 otherwise then

S(f)(w) =
sin 2 (wup)

1 2 = . 2mj
S F(8)(3) & ((w-wy) - +
2p2 (wming) 2 Z ( 0 ZP_>

J:-m
2

sin 2 (w;wo)A oo -

: : mj
(i) 2 ;Z;m F(e)(3) ¢ ((w+w0) + ZE;.)

This result follows from the fact that

2
E(fo)(w) . AE. sin G@Z_)

()

We have shown through the preceding calculations that the power spectral

density of the four-phase encoded signal consists of spectral lines at
multiples of the code repetition frequency and modulated by a (sin 2x)/x2

envelope. The amplitude of the spectral lines are determined by the
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digital fourier transform of the complex auto-correlation function EE
ey

of the encoding four-state sequence. In what follows., we compute &

this digital fourier transform for a maximal four-state sequence and
then completely determine the power spectral density of a carrier

encoded with a four-state maximal PN sequence.

Result: Let a be a maximal four-state PN sequence of period

P= 4n -1. We have shown that the auto-correlation function of a is

given by:

6(a)(0) = P+ 0j

o(a)(P/3) = -1+ (B41) ;
ofa)(2p/3) = -1 % (1)

o(a)(t) = -1+ 0j Otherwise

Let F(e(a)) be the digital fourier transform of the correlation sequence

8(a) where

v
.

F (o) (3) = o(a) (ke LI . Then

>
il
o
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Fe(a) (3)¢

r—

(P+1)(1 t—g—;) for j =1 modulo 3
(P + 1)(1 ¥ 3%5 ) for j =2 modulo 3

(P+1) forj =0 modulo3; Jj 0 modulo P

1 for j =0 modulo P

P-1
-27ijk
6(a) (k) 5
k=0
P-1 P-1
e priik
Re(6(a)(k)) e ZEHE 4 4 In 6(a) (k)e ~5
k=0 k=0 "

We now evaluate each of the above terms separately by substituting

for the values of the sequence 6(a)

o)
1
—

Re 8(a)e

=
1]
o

-2wijk
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P+1 for j #0 modulo P

1 for j =0 modulo P

P-1
-2mijk
i Z In o(a) (ke ~5
=0
+ Bil) -2mijk 7 (P+1 i e 2mi ]
- \72 3 > 3
f
0 for j =0 modulo 3
(P+1)[1L sin—z-%j] = ¢t % for j =1 modulo 3
- V3 o
+ —2— for j =2 modulo 3

The above sum thus becomes
1 for j =0 modulo,P

P+1 for j =0 modulo 3; j #0 modulo P
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The spectral lines of binary and four-state sequences are illustrated

in Figure E-3.

for J =1 modulo 3

for j =2 modulg 3

s

cee P ptlp+2 p+3

]

vt b, o 32

2l
p
1
p? |
0 1
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]
p
p? 2
1
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Figure E-3.
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Spectral lines of PN Sequences (A) Binary
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(B) Four-State
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